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SYNOPSIS 

We have examined the adsorption of poly f ethylene oxide ) fpoly ( propylene oxide ) /poly- 
(ethylene oxide) (PEO/PPO/PEO) triblock copolymers (Pluronics@) on dimethyldi- 
chlorosilane-treated glass ( DDS-glass) . The surface concentration of '251-labeled Pluronic 
F-68(76/30/76) reached a maximum of 0.3 pg/cm2 when the bulk concentration in the 
adsorption solution was 3.0 mg/mL. Above 5.0 mg/mL, the surface Pluronic F-68 concen- 
tration started to decrease and reached 0.17 pg/cm2 when the bulk concentration for ad- 
sorption was 10 mg/mL. The surface concentration of Pluronic F-108 (129/56/129), on 
the other hand, increased to 4.0 pg/cm2 at the same bulk concentration. Fluorescence 
spectroscopic studies using pyrene suggested that the Pluronic F-68 molecules self-associated 
at the bulk concentration of 5.0 mg/mL and above. Because the aggregates are expected 
to expose the hydrophilic PEO segments to water, they may have lower affinity to DDS- 
glass. Aggregation of Pluronic F-68 also decreases the number of individual Pluronic mol- 
ecules for adsorption. Pyrene fluorescence in Pluronic F- 108 solution, however, suggests 
that Pluronic F-108 molecules do not form aggregates. It appears that the high surface 
concentrations of Pluronic F-108 may result from the preferential adsorption of individual 
molecules in multilayers. This explains the high effectiveness of Pluronic F-108 in preventing 
protein adsorption and platelet adhesion when adsorbed on to the hydrophobic surface. 
0 1994 John WiIey & Sons, Inc. 

INTRODUCTION 

Since their introduction in 1950, poly (ethylene ox- 
ide ) /poly ( propylene oxide) /poly (ethylene oxide ) 
(PEO/PPO/PEO) triblock copolymers (Pluron- 
ics-, BASF) have become important nonionic 
polymeric surfactants.1*2 Pluronic surfactants have 
found applications in chemical, agricultural, and 
pharmaceutical indu~tries.~ Pluronic surfactants 
play an important role in the stabilization of hy- 
drophobic colloidal particles in water. Pluronic co- 
polymers are known to adsorb on hydrophobic sur- 
faces by the middle PPO segment, while the PEO 
segments interact with water molecules and extend 
into the bulk aqueous s ~ l u t i o n . ~ - ~  The flexible PEO 
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segment can also prevent protein adsorption and 
cell adhesion on biomaterial surfaces by the steric 
repulsion mechanism.'-" 

Our previous study showed that Pluronics con- 
taining 30 propylene oxide ( PO ) residues [e.g., Plu- 
ronic F-68 (76/30/76)], when adsorbed on dimeth- 
yldichlorosilane-treated glass ( DDS-glass ) , could 
not prevent plasma protein adsorption and platelet 
adhesion. The adsorption of Pluronics containing 
56 PO residues [e.g., F-108 (129/56/129)] on DDS- 
glass, however, resulted in complete prevention of 
protein adsorption and platelet adhesion.12*13 It was 
thought that Pluronics with 56 PO residues were 
able to bind tightly to DDS-glass due to the large 
size of the hydrophobic PPO segment. Pluronic F- 
68 could prevent platelet adhesion, if the adsorbed 
copolymer molecules were covalently grafted to the 
surface by gamma irradiation.14 The tight binding 
of Pluronics to the surface by hydrophobic inter- 
actions or covalent grafting is important for effective 
steric repulsion of plasma proteins and cells. 
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In addition to tight binding, effective steric re- 
pulsion by the adsorbed Pluronics requires complete 
surface coverage. Previous studies have shown that 
the surface concentrat~~n of adsorbed Pluronics in- 
creases dramatically above the critical micelle con- 
centration { CMC ) / Above the CMC, Pluronic co- 
polymers could adsorb either as micelfar aggregates 
or form surface micelles by self-association after ad- 
sorption as suggested by Lig0~re.l~ The ability of 
polymeric surfactant to from micelles in aqueous 
solution is still a controversial subject. The debate 
stems from different values of CMC that are re- 
ported in the literature. For Pluronic F-68, for in- 
stance, the CMC ranges from 0.05 mg/mL to 50 
mg/mL.4J6J7 

In this study we have examined the adsorption 
of 1251-labeled Pluronics F-68 and F-108 on DDS- 
glass. p -Methoxyphenyl derivatives of Pluronics 
F-68 and F-108 were synthesized and labeled with 
Ia51. The aggregation behavior of Pluronics in bulk 
aqueous solution was examined using fluorescence 
spectra of pyrene in bulk Pluronic solutions. 

~ A l E ~ ~ A l S  AND METHODS 

Preparation and Characterization of Surfaces 

Dimethyld~chlorosi~ane-treated glass ( DDS-glass ) 
tubing was prepared by the method described pre- 
viously.18 Glass tubing (i.d. 2.50 mm, Kimble, Vine- 
land, N J )  was cleaned with 2% (v/v) Isoclean (Is- 
olab, Akron, OH) for 3 h at 60OC. The tubing was 
then rinsed with deionized distilled water and dried. 
Clean glass tubing was treated with 5% (v/v) DDS 
(Sigma Chemical Co., St. Louis, MO) in chloroform 
for 2 h at room temperature. The reaction introduces 
methyl groups on the glass surface through a silane- 
ether bridge. DDS-glass tubing was washed with 
chloroform and ethanol in sequence twice, followed 
by deionized distilled water. DDS-glass tubing was 
dried overnight at 60°C. DDS-glass tubing was used 
to measure the surface ~on~entration of '251-labeled 
Piuronics. 

For contact angle studies, glass coverslip ( 25 X 75 
mm, #I, Bellco, Vineland, NJ) was used instead of 
glass tubing. Glass coverslip was cleaned and mod- 
ified with DDS as described above. Underwater con- 
tact angles were measured using a contact angle go- 
niometer ( Rame-Hart, Mountain Lakes, N3) 
equipped with an immersion ~hamber . ' ~ .~~  Air-wa- 
ter-surface and octane-water-surface static bubble 
contact angles were measured. Contact angles were 
measured on ten different regions of each surface. 

The surface free energies at the solid-liquid interface 
were calculated from contact angle measurements 
using the harmonic mean approximation method 
deseribed by Andrade et al?l The method utilizes 
the €o~l~wing harmonic mean equation: 

where the subscripts S ,  V,  and W refer to the solid, 
vapor, and water phases, respectively, The super- 
scriptsp and d refer to the polar and dispersive com- 
ponents of the surface free energies. 

Preparation of '251-Labeled Pluronics 

Pluronics F-68 and F-108 were obtained from the 
Performance Chemical Division of BASF Corpo- 
ration (Parsippany, NJ). The physical properties 
of Pluronics are listed in Table I. Pluronic F-68 and 
F-108 were dissolved in phosphate-buffered saline 
solution (FBS, p H  7.4 ) and labeled with 1251r as pre- 
viously d e s ~ r ~ ~ . ' ~  For lZ5I-labeling, the terminal 
hydroxyl groups of PEO chains in Pluronic copol- 
ymers were modified by reaction with p -methoxy- 
phenyl chforoformate (Sigma). The p -methoxy- 
phenyl derivatives of Pluronic F-68 and Pluronic F- 
108 were labeled with lZ5I using IODO-GEN (Pierce, 
Rockford, IL) . The bulk concentration of radiola- 
beled Pluronic was calculated from a standard curve. 

Quantitation of the Surface Pluronic 
Concentration 

The final solutions of Pluronic IF-68 and Pluronic 
F-108 for adsorption on DDS-glass tubing were made 
by mixing radiolabeled Pluronics with unlabeled 
Pluronics in a weight ratio of 1 : 10. The radioactivity 
of a known Pluronic concentration was measured 

Table I Properties of Pfuronic Copolymers' 

Thickness of 
Adsorbed 

Pluronic Mol. Layerb 
Copolymer Wt. EUJPCtfEO (At 

Pluronic F-68 8,350 76/30/76 6 0 k  6 
Pluronic F-108 14,000 129/56/129 118 +. 15 

a From ref. 2. 
The thickness of adsorbed Pluronic copolymers on polysty- 

rene latcies (diameter 0.305 pm) measured by photon correlation 
spectroscopy (from ref. 7). 
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Table I1 Contact Angles (43) and Surface Free Energies (7) on Pluronic-Adsorbed DDS-Glass 

@air @,,a,, YPSV Y$v Ysv Ysw 

Control DDS-glass 75.6 k 3.4" 98.3 k 2.1 13.9 24.3 38.1 21.0 

F-108-adsorbed DDS-glassb 59.8 k 2.7 76.8 k 4.9 22.3 21.4 43.7 10.9 

Surface Treatment (degree) (degree) (dynes/cm) (dynes/cm) (dynes/cm) (dynes/cm) 

F-68-adsorbed DDS-glassb 60.8 k 2.9 78.3 f 3.7 21.9 21.4 43.2 11.4 

'Average * SD (n = 10). 
Pluronics were adsorbed at the bulk concentration of 10 mg/mL for 1 h at room temperature. Nonadsorbed Pluronics were removed 

by washing with PBS prior to contact angle measurements. 

using a gamma counter (Gamma 5500B, Beckman, 
Arlington Heights, IL). Pluronic F-68 or F-108 at 
the bulk concentration ranging from 0.001 mg/mL 
to 10 mg/mL was allowed to adsorb on DDS-glass 
tubing for 1 h at room temperature. Nonadsorbed 
Pluronics were removed by rinsing the tubing with 
PBS. The surface Pluronic concentrations were de- 
termined from the surface radioacitivities and the 
known relationship between the radioactivity and 
Pluronic concentration. The data represents mean 
k SD from four separate experiments. 

Pyrene Fluorescence Studies 

Pyrene (Sigma) was added to Pluronic solutions 
from a 1.0 m M  stock solution in ethanol to give the 
final concentration of 2.0 p M .  No excimer emission 
was observed at such a pyrene concentration. Pyrene 
emission spectra were obtained with SLM 8OOOC 
( SLM-Aminco, Urbana, IL) fluorescence spectro- 
photometer. Pyrene was excited at 343 nm and the 
emission spectra were obtained with slit opening of 
0.5 mm at  an integration time of 1 s per 1 nm. The 
emission spectrum of pyrene showed five distinct 
peaks. The ratio of the third to the first peaks (III/ 
I ratio) was calculated from the emission intensities 
at 384 nm and 372 nm. The data represent mean 
k SD from four separate experiments. 

RESULTS A N D  DISCUSSION 

Characterization of Pluronic-Adsorbed 
DDS-Glass 

Table I1 shows the results of contact angle mea- 
surements and the calculated surface-free energies 
on control DDS-glass and DDS-glass modified by 
preadsorption of Pluronic F-68 or Pluronic F-108. 
Contact angle measurements on DDS-glass clearly 
show that it is a very hydrophobic substrate. Plu- 
ronic F-68-treated DDS-glass had a 37% increase in 

the polar component of the surface free energy 
( y & )  and 12% decrease in the dispersive component 
( y &) compared to the control DDS-glass. The same 
results were observed on Pluronic F-108-treated 
DDS-glass. The results clearly indicate that the hy- 
drophilicity of DDS-glass is increased by Pluronic 
coating. Although the difference in contact angle 
between Pluronic F-68- and F-108-modified DDS- 
glass was not significant, the adsorption behavior of 
these two copolymers on DDS-glass was significantly 
different (see below). 

Surface Pluronic Concentration on DDS-Class 

The surface Pluronic F-68 concentration on DDS- 
glass increases as the bulk Pluronic concentration 
used for adsorption increases as shown in Figure 1. 
The surface concentration was 0.10 pg/cm2, even 

0 . 4 1  
I 

. -  . -  . - . - . -  . - .  
0 2 4 6 8 10 1 2  1 4  

BULK PLURONIC F-68 CONCENTRATION (mg/mI) 

Figure 1 The adsorption isotherm of Pluronic F-68 on 
DDS-glass. Radiolabeled Pluronic F-68 was adsorbed for 
1 h at room temperature. 
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at the bulk Pluronic F-68 concentration of 0.10 mg/ 
mL. The surface Pluronic F-68 concentration 
reached a maximum of 0.30 pglcm' when the bulk 
concentration was 3.0 mg/mL. At the surface Plu- 
ronic F-68 concentration of 0.3 pg/cm', the area 
occupied by each Pluronic F-68 molecule on DDS- 
glass is calculated to be 4.6 nm'. At bulk concen- 
trations higher than 4.0 mg/mL, the surface Plu- 
ronic F-68 concentration decreased. At the bulk 
Pluronic F-68 concentrations of 5 mg/mL and 10 
mg/mL, the surface concentrations decreased to 0.25 
pg/cm2 and 0.17 pglcm', respectively. 

Figure 2 shows the surface Pluronic F-108 con- 
centration as a function of the bulk Pluronic con- 
centration used for adsorption. At  lower concentra- 
tions of 0.1 mg/mL and 1.0 mg/mL, the surface 
Pluronic F-108 concentration was 0.20 pg/cm' and 
1.13 pg/cm', respectively. These values are much 
higher than those in Figure 1. The surface Pluronic 
F-108 concentration continued to rise as the bulk 
concentration for adsorption increases. At  the bulk 
Pluronic F-108 concentration of 3.0 mg/mL, for in- 
stance, the surface concentration was 2.75 pglcm'. 
The surface Pluronic F-108 concentration reached 
a plateau value of about 4.0 pg/cm', when the bulk 
Pluronic concentration was increased to 10 mg/mL. 
At  the surface concentration of 4.0 pg/cm2, the 
area occupied by each Pluronic F-108 molecule is 
0.58 nm2. 

Pluronic F-68 showed two salient features in its 
adsorption behavior. First, the surface concentration 
reached a transient maximum at the bulk concen- 

5.0 1 

0.0 Y 
0 2 4 6 0 1 0  12  1 4  

BULK PLURONIC F-108 CONCENTRATION (rnghl) 

Figure 2 The adsorption isotherm of Pluronic F-108 
on DDS-glass. Radiolabeled Pluronic F-108 was adsorbed 
for 1 h at  room temperature. 

tration for adsorption of 3.0 mg/mL. Somehow, the 
affinity of Pluronics decreased as the bulk concen- 
tration increased. This suggest that they form ag- 
gregates that expose hydrophilic PEO segments to 
water, and the aggregates have lower affinity to the 
hydrophobic surface. In addition, there will be fewer 
individual Pluronic F-68 molecules for adsorption. 
Second, at the maximum surface concentration, the 
area occupied by each molecule is 4.6 nm'. This in- 
dicates that Pluronic F-68 molecules adsorb as a 
monolayer on the surface. The adsorption profile of 
Pluronic F-108 molecules was quite different from 
that of Pluronic F-68. The surface concentration of 
Pluronic F-108 increased monotonically without 
transient maximum, and the area occupied by an 
individual Pluronic F-108 molecule was only 0.58 
nm', which is unusually small. This suggests that 
Pluronic F-108 molecules adsorb as individual mol- 
ecules to form multilayers. 

Fluorescence Spectra of Pyrene in Pluronic 
Solutions 

Pyrene fluorescence studies were carried out in Plu- 
ronic solutions to examine whether Pluronic F-68 
and F-108, indeed, form aggregates in solution at 
concentration range used in the above study. Due 
to the hydrophobic nature of the probe, pyrene con- 
centrates in the hydrophobic regions of amphipathic 
molecules.22 In Pluronics, pyrene is expected to lo- 
calize in the hydrophobic PPO segment of the co- 
polymer. Fluorescence spectrum of pyrene monomer 
is characterized by five peaks whose intensities de- 
pend strongly on the dielectric constant and other 
polarity scales of the m e d i ~ m . ~ ~ . ~ ~  Pyrene, a weak 
base, interacts with polar solvents through dipole- 
dipole interactions, leading to an enhancement in 
the intensity of peak I at 372 nm.23 The intensity 
enhancement is due to the reduction in pyrene sym- 
metry by complexation with solvent molecules.24 In 
polar solvents, the intensity of peak I at 372 nm 
increases, whereas little effect is observed on peak 
I11 at 384 nm. The III/I ratio of pyrene fluorescence, 
therefore, has been used to study the change in en- 
vironmental polarity. In polar and nonpolar solvents 
such as water and benzene, the values of III/I ratio 
are about 0.57 and 0.88, respecti~ely.~~ Kalyanasun- 
daram and Thomas26 have used the III/I ratio to 
determine the CMC values of various surfactants. 

Figure 3 shows pyrene spectra in Pluronic F-68 
solutions at the bulk Pluronic concentrations of 0.1 
mg/mL (A) ,  1.0 mg/mL ( B ) ,  and 10 mg/mL ( C ) .  
The III/I ratio increased with increase in the bulk 
Pluronic F-68 concentration. In Pluronic F-68 so- 
lution at the bulk concentration of 0.01 mg/mL, the 
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Figure 3 Fluorescence spectra of pyrene in Pluronic F-68 solutions. Peaks at 372 nm 
(peak I )  and 384 nm (peak 111) are indicated by the arrows. Pyrene was dissolved in 
Pluronic F-68 solution at the final concentration of 2.0 p M .  The bulk concentration of 
Pluronic F-68 was 0.1 mg/mL ( A ) ,  1.0 mg/mL ( B  ) , and 10 mg/mL ( C )  . 

I11 / I ratio was 0.56 as shown in Figure 4 (closed 
circles). This value is the same as the value of pyrene 
in water. As the bulk Pluronic F-68 concentration 
increases to 1.0 mg/mL, the III/I ratio increases to 
0.60. The transition in III/I ratio occurs at the bulk 
concentration of 2.0 mg/mL. Above this bulk con- 
centration, the III/I ratio increases sharply. The 
III/I ratio was 0.71 at  the bulk Pluronic concentra- 
tion of 20 mg/mL. The value of 0.71 indicates that 
pyrene molecules are in an environment similar to 
methylene chloride rather than water. 

The surface Pluronic F-68 concentration de- 
creased as the bulk concentration for adsorption in- 
creased more than 4.0 mg/mL (Fig. 1 ). Figure 4 
shows that the hydrophobicity of pyrene's environ- 
ment increases as the bulk concentration increases 
above 2.0 mg/mL. In aqueous solution, Pluronic co- 
polymers are known to self-associate above a certain 
critical bulk c~ncentration.'~ The increase in the III/ 
I ratio is consistent with the aggregation of Pluronics 
F-68. The aggregate is expected to have a hydro- 
phobic core of PPO segments and hydrophilic sur- 
face of PEO segments. Because the adsorption of 

Pluronics to the DDS-glass is due to the hydrophobic 
interactions, the aggregates may not have the same 
affinity to the surface as individual Pluronic mole- 
cules. Aggregation of Pluronic F-68 also decreases 
the number of individual Pluronic molecules for ad- 
sorption. This may result in a decrease in the surface 
Pluronic F-68 concentration when the bulk concen- 
tration was above 5.0 mg/mL, as observed in 
Figure 1. 

For Pluronic F-108 (open circles in Fig. 4), the 
III/I ratio was 0.90 even at the bulk concentration 
of 0.01 mg/mL. This value of III/I ratio a t  low Plu- 
ronic F-108 concentration suggests individual Plu- 
ronic F-108 molecules have hydrophobic PPO core 
wrapped around by the hydrophilic PEO chains. In 
Pluronic F-108 molecules, the pyrene microenvi- 
ronment is similar to that in benzene. With increas- 
ing bulk Pluronic concentrations, the I11 / I  ratio in 
Pluronic F-108 solution did not change as much as 
in Pluronic F-68 solution. At the bulk Pluronic F- 
108 concentration of 20 mg/mL, the III/I ratio in- 
creased to only 0.95. The III/I ratio in Pluronic F- 
108 remained in a range from 0.90 to 1.0, regardless 
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Figure 4 The III/I ratios of pyrene monomer fluores- 
cence in Pluronic F-68 (1) and F-108 (m) solutions as a 
function of bulk Pluronic concentration. 

of the bulk Pluronic concentration. This suggests 
that pyrene's microenvironment does not change 
significantly with increasing Pluronic F-108 con- 
centration. Thus, it is reasonable to assume that the 
individual Pluronic F-108 molecules remain unas- 
sociated with each other. This may have resulted in 
a big difference in the adsorption behavior between 
Pluronic F-108 and Pluronic F-68. 

In summary, our fluorescence study showed that 
Pluronic F-68 molecules form aggregates in solution 
when the bulk concentration was increased above 
2.0 mg/mL and the adsorption of aggregates is not 
as favorable as that of individual molecules. This 
may have resulted in a decrease in surface concen- 
tration as the bulk concentration increased above 
3.0 mg/mL. In contrast to Pluronic F-68, Pluronic 
F-108 molecules do not form aggregates. In any case, 
the high surface concentration appears to result from 
the adsorption of individual molecules in multilay- 
em. Our previous study showed that Pluronic F-108 
was highly effective in preventing protein adsorption 
and platelet adhe~ion.'~ This may be due to its pref- 
erential adsorption to the hydrophobic surface. 

This study was supported by the National Heart, Lung, 
and Blood Institute of the National Institute of Health 
through grant HL 39081. 
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